

VSI C-Macro
User Guide

Document Revision 1.5
(Updated Sep. 26, 2023)

© 2020 Vital Systems Inc
Buford, GA USA

www.vitalsystem.com

http://www.vitalsystem.com/

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 1 www.vitalsystem.com

Extremely Important Reminder

When operating machines, take extreme
precautions. The machines can have

enormous power even with a small motor.
Never come inside a machine path while
powered. Operating machines without

necessary precautions can result in severe
injury or even death.

WARNING: Machines in motion can be extremely
dangerous! It is the responsibility of the user to design
effective error handling and safety protection as part of
the system. VITAL Systems shall not be liable or
responsible for any incidental or consequential damages.
By using the any Vital System Inc. motion controller and
accompanying software, you agree to the license
agreement.

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 2 www.vitalsystem.com

Contents
License Agreement ... 3

I. Macro Basics .. 4

1. What is a VSI C-Macro? ... 4

2. VSI Macro Loader .. 4

How to run a VSI C-Macro: .. 5

3. Running your VSI C-Macro from within Mach3 and Mach4 .. 5

4. Mach DROs and LEDs .. 5

5. Program Format .. 6

6. Additional Information and Supported Libraries .. 6

II. VSI C-Macro Functions .. 7

1. Misc Functions .. 7

Print(const char *format, ...) ... 7

Sleep(long milliseconds) .. 7

2. Input/Output Functions .. 8

long GetPin(long port, long pin).. 8

SetPin (int port, int pin, int state) ... 8

long GetLED(long index) ... 8

SetLED(long index, long state) .. 9

float GetDRO(long index) .. 9

SetDRO(long index, float value) .. 9

long GetControl (int index) ... 9

float GetControlFloat (int index) ... 11

SetControl (int index, int value) .. 11

3. Motion Functions .. 13

long DoMotionAxis(int axis, float finalPosition, float speed, float accel, long mode) .. 14

long DoMotionXYZ(float posX, float posY, float posZ, float speed, float accel, long mode) ... 15

long DoLinearMove (long axisMap, float* axisPositions, float speed, float accel, long mode) 15

long DoHoming(long axis, float homePosition, float speed, float accel, long homingParams) 16

CancelMove(long axis, long instantStop) ... 17

4. Arc/Circle Motion Functions ... 18

Arc Motion Errors.. 18

long DoArcMoveCenter (long axisOfRotation, float* axisPositions, float offset1, float offset2, float speed, bool
clockwise) .. 19

long DoArcMoveRadius (long axisOfRotation, float* axisPositions, float radius, float speed, bool clockwise) 20

long DoArcMoveAngle (long axisOfRotation, float* axisPositions, float arcAngle, float speed, bool clockwise) 21

III. Debug Registers ... 22

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 3 www.vitalsystem.com

License Agreement

Before using any Vital System Inc. (VSI) hardware and/or software, please take a moment to go
thru this License agreement. Any use of this hardware and software indicate your acceptance to
this agreement.

It is the nature of all machine tools that they are dangerous devices. In order to be permitted to
use VSI hardware and/or software on any machine you must agree to the following license:

I agree that no-one other than the owner of this machine, will, under any circumstances be
responsible, for the operation, safety, and use of this machine. I agree there is no situation under
which I would consider Vital Systems Inc., or any of its distributors to be responsible for any
losses, damages, or other misfortunes suffered through the use of VSI hardware and/or software.
I understand that the VSI hardware and/or software is very complex, and though the engineers
make every effort to achieve a bug free environment, that I will hold no-one other than myself
responsible for mistakes, errors, material loss, personal damages, secondary damages, faults or
errors of any kind, caused by any circumstance, any bugs, or any undesired response by VSI
hardware and/or software while running my machine or device.

I fully accept all responsibility for the operation of this machine while under the control of VSI
hardware and/or software, and for its operation by others who may use the machine. It is my
responsibility to warn any others who may operate any device under the control of VSI hardware
and/or software of the limitations so imposed.

I fully accept the above statements, and I will comply at all times with standard operating
procedures and safety requirements pertinent to my area or country, and will endeavor to ensure
the safety of all operators, as well as anyone near or in the area of my machine.

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 4 www.vitalsystem.com

I. Macro Basics

1. What is a VSI C-Macro?

VSI C-Macros are programs written in C programming language (.c file) which can be downloaded and executed
directly inside any Vital System Inc. Motion Controller. The program allows the user to manipulate high speed I/O
and launch motion commands, as well as, communicate with PC programs, such as, Mach3 and Mach4 over Ethernet.

Advantages:

• Real-time processing

• No Network Latency

• Instant I/O state changes

• Standalone operation capable (no PC intervention)

• Allows custom features that are not supported by CNC Software such as Mach.

2. VSI Macro Loader

VSI Macro Loader is an application that is used to install and debug Macro programs (written in BASIC or C language)
for VSI Motion Controllers.

Download link: http://www.vitalsystem.com/portal/motion/VSIMacroLoader.zip

http://www.vitalsystem.com/portal/motion/VSIMacroLoader.zip

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 5 www.vitalsystem.com

How to run a VSI C-Macro:

1. Open Mach3 or Mach4 and follow the setup as specified in the Mach3 or Mach4 Software Integration

manual (if not yet done). This is where all configuration parameters are taken from.

2. Run the VSI Macro Loader application.

3. Click the “Connect” button to open the connection dialog window.

4. If your VSI Motion Controller is on the same network as your PC, it will be listed as an entry in the dialog
window. Click on it, then click OK.

5. If a connection was successfully established, click the “Download” button and select which Macro (.bas or
.c file) you would like to download. This will also compile the program.

6. If your C-Macro has any compilation errors, they will be listed in the “Build” window.

7. If the download was successful, click the “Run/ Stop” button to run the Macro program.

8. Use the output window to get feedback and check for errors.

3. Running your VSI C-Macro from within Mach3 and Mach4

The downloaded VSI C-Macro can be started from within Mach3 or Mach4.

• Mach3 – Turn on LED 2035.

• Mach4 – Set the “RunDeviceMacro” Register to any non-zero value (such as “1”).

4. Mach DROs and LEDs

There are certain ranges of Mach DROs (32-bit Floating Point values) and LEDs (Binary 0 or 1) that are shared
between Mach3/Mach4 and the Macro Program.

Type Range Description C-Macro Function
LED 2000…2031 LEDs written by Mach. Read-only inside Macro Program GetLED
LED 2050…2081 LEDs written by Macro. Read-only inside Mach GetLED, SetLED
DRO 2000…2049 DROs written by Mach. Read-only inside Macro GetDRO
DRO 2050…2099 DROs written by Macro. Read-only inside Mach GetDRO, SetDRO

NOTE: If controller is already configured for standalone operation, Step1 can be skipped.

NOTE: Macro programs may also be allowed to execute automatically on power-up by clicking the “Autorun”
button, however this is only recommended when the Macro Program is fully debugged and error-free.

NOTE: In Mach4, LEDs and DROs are accessed as registers “VLED_xxxx” and “VDRO_xxxx”.

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 6 www.vitalsystem.com

5. Program Format

The C-Macro program must ALWAYS follow the format below. It also serves as the basic template.

6. Additional Information and Supported Libraries

The VSI C-Macro feature supports the following standard C libraries:

• <math.h>

• <string.h>

• <stdlib.h>

#include "cmacro.h" // (REQUIRED) This is the C-Macro library
#include <math.h> // (optional)
/*include other libraries here*/

void CMacro() // (REQUIRED) this is the C-Macro Main Function and the entry point of your program
{
 // Start of C Macro
 while(1) // main loop
 {
 SetPin(11, 1, 0); // turn off output on Port 11 Pin 1
 Sleep(250); // delay ¼ second

 SetPin(11, 1, 1); // turn on output on Port 11 Pin 1
 Sleep(250); // delay ¼ second

 SetDRO(2050, sin(pi / 2)); //set DRO 2050 to sin 90 degrees
 }
 // End of C Macro. The end of this function signals the termination of the macro
}

NOTE: For information on the standard C libraries, as well as general tutorials about writing C programs, please
refer to these useful links:

http://www.cprogramming.com/tutorial/c-tutorial.html
http://www.cplusplus.com/reference/clibrary/

http://www.cprogramming.com/tutorial/c-tutorial.html
http://www.cplusplus.com/reference/clibrary/

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 7 www.vitalsystem.com

II. VSI C-Macro Functions

1. Misc Functions

Print(const char *format, ...)

Prints a formatted string. Print output is shown on the VSI Macro loader Output Window.

Sleep(long milliseconds)

Pauses the Macro program execution for the specified amount of milliseconds.

Parameters:

• milliseconds – amount of time to sleep in milliseconds.

NOTE: When writing VSI C-Macros, it is recommended to use an IDE (such as Notepad++) as opposed to a plain
text editor for ease of use and colored syntax.

NOTE: This function uses the same format and parameters as the standard “Printf()” function in C. As such, it can
use the same string formats that “Printf()” supports.

Example: The following code snippet prints some standard formatted messages.

Print(“This is my debug message\n”); // displays “This is my debug message”
long number = 7762;
Print(“My number is %d\n”, number); // displays “My number is 7762”
float value = (2 / 3);
Print(“My value is %g\n”, value); // displays “My value is 0.66666667…”

https://notepad-plus-plus.org/

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 8 www.vitalsystem.com

2. Input/Output Functions

long GetPin(long port, long pin)

Returns current state of a digital input.

Parameters:

• port – the logical port where the digital input pin is located (valid range [11 – 14]).

• pin – the digital input pin (valid range [0 – 15]).

Port DSPMC (7763) Integra (7866) Integra (7766)

11 J1 Digital Inputs [0 – 15] J13 and J14 Digital Inputs J13 and J14 Digital Inputs

12 J2 Digital Inputs [16 – 31] J7 Digital Inputs J7 Digital Inputs

13 J3 Digital Inputs [32 – 47] J8 Digital Inputs J8 Digital Inputs

14 J4 Digital Inputs [48 – 63] J10 Digital Inputs J10 Digital Inputs

SetPin (int port, int pin, int state)

Sets the active state of a digital output.

Parameters:

• port – the logical port where the digital input pin is located (valid range [11 – 14]).

• pin – the digital input pin (valid range [0 – 8]).

• state – the new active state of the digital output (0 or 1).

Port DSPMC (7763) Integra (7866) Integra (7766)

11 J1 Digital Outputs [0 – 7] J15 Digital Outputs J15 Digital Outputs

12 J2 Digital Outputs [8 – 15] J7 Digital Outputs J7 Digital Outputs

13 J3 Digital Outputs [16 – 23] J8 Digital Outputs J8 Digital Outputs

14 J4 Digital Outputs [24 – 31] - -

long GetLED(long index)

Read the specified LED state.

Parameters:

• index – the LED index. Index range [2000 – 2031] are LEDs written by Mach. Index range [2050 – 2081] are
written by the motion controller via SetLED.

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 9 www.vitalsystem.com

SetLED(long index, long state)

Write a bit value (0 or 1) to the specified LED.

Parameters:

• index – the LED index (valid range [2050 – 2081]).

• state – the new active state of the LED (0 or 1).

float GetDRO(long index)

Read the specified DRO value.

Parameters:

• index – the DRO index. Index range [2000 – 2049] are DROs written by Mach. Index range [2050 – 2099]
are written by the motion controller via SetDRO.

• state – the new active state of the LED (0 or 1).

SetDRO(long index, float value)

Write a floating point value to the specified DRO.

Parameters:

• index – the DRO index (valid range [2050 – 2099]).

• state – the new active state of the LED (0 or 1).

long GetControl (int index)

Read internal data of the VSI Motion Controller specified by the “index” parameter. C index definitions are also
available for ease of use.

Parameters:

• index – indicator for specific control data field (see table below).

Example: The following code snippet reads the feedback position of each axis by using a loop:

int axis;
int axisPositions[8];
for(axis = 0; axis < 8; axis ++)
 axisPositions[axis] = GetControl(GET_CTRL_AXIS_FEEDBACK_POS + axis);

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 10 www.vitalsystem.com

HiCON Control Parameters

Index C #define Description

0 – 31 GET_CTRL_DIGI_INPUTS Digital Input States (0 – 31) located on P11 and P12

35 GET_CTRL_DRIVE_ENABLE PID Active (or Drive Enabled) State

36 GET_CTRL_FIFO_LEVEL Command Position FIFO Level.

40 – 71 GET_CTRL_DIGI_OUTPUTS Digital Output States (0 – 31)

80 – 85 GET_CTRL_AXIS_FEEDBACK_POS Axis Feedback Position

100 – 101 GET_CTRL_ANALOG_INPUT Analog Input Voltage in millivolts

120 GET_CTRL_MOTION_ACTIVE Motion active (all axis). Returns “1” if motion is present, or
“0” if not.

126 GET_CTRL_ERROR_STATE Error LED state

130 – 137 GET_CTRL_ENCODER_COUNTS Current encoder counts

140 – 171 GET_CTRL_DIGI_INPUTS_EXT Digital Input States (32 – 63) located on P13 and P14

190 – 195 GET_CTRL_SEQUENCE_IN_PROGRESS Returns “1” if a motion sequence is in progress, or “0” if not.

200 – 205 GET_CTRL_AXIS_HOMED Returns “1” if the axis is homed, or “0” if not.

210 – 215 GET_CTRL_AXIS_MOTION_ACTIVE Motion active (single axis). Returns “1” if motion is present,
or “0” if not.

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 11 www.vitalsystem.com

float GetControlFloat (int index)

Read float-specific internal data of the VSI Motion Controller specified by the “index” parameter. C index definitions
are also available for ease of use.

Parameters:

• index – indicator for specific control data field (see table below).

HiCON Control Parameters

Index C #define Description

90 – 95 GET_CTRL_AXIS_COMMAND_POS Axis Command Position

110 GET_CTRL_THREADING_RPM Current Threading RPM

180 – 185 GET_CTRL_AVG_VELOCITY Average Velocity on Axis in units/min

400 – 405 GET_CTRL_AXIS_INPUT_GAIN Axis Input Gain

410 – 415 GET_CTRL_COUNTS_PER_UNIT Axis Counts Per Unit

500 GET_CTRL_DAC_COUNTS Current Voltage on specified analog output in millivolts.

SetControl (int index, int value)

Sets internal data of the VSI Motion Controller specified by the “index” parameter. C index definitions are also
available for ease of use.

Parameters:

• index – indicator for specific control data field (see table below).

• value – the new value for the control data field.

Example: The following code snippet reads the velocity of each axis by using a loop:

int axis;
float axisVelocity[6];
for(axis = 0; axis < 6; axis ++)
 axisVelocity [axis] = GetControl(GET_CTRL_AVG_VELOCITY + axis);

Example: The following code snippet turns off all digital outputs.

int index = 0;
for(index = 0; index < 32; index ++)
 SetControl(SET_CTRL_DIGI_OUTPUTS + index, 0);

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 12 www.vitalsystem.com

HiCON Control Parameters

Index C #define Description

40 – 71 SET_CTRL_DIGI_OUTPUTS Digital Output States (0 – 31)

80 – 85 SET_CTRL_AXIS_POSITION Sets Axis 0 – 5 Position to the specified value

90 SET_CTRL_POSITION_SYNC Inform Mach to Sync to the current axis positions. The
position sync will occur only when all motor positions are still.

91 SET_CTRL_DRIVE_ENABLE Arm/Disarm the motion controller. “Value” is a bitmask of
which axes to arm (e.g. 7 => 00000111, arms axes: x, y, and z).
A value of 0 will disarm the motion controller.

92 SET_CTRL_DISARM_STOP_MACRO Set Macro to terminate when the controller disarms.

100 SET_CTRL_DAC_OUTPUT Write milliVolts where “value” ranges from 0 to 10,000 to the
Spindle DAC Channel

130 – 138 SET_CTRL_ENCODER_COUNTS Write any value to Encoder Counter Channel 0 – 7

140 – 145 SET_CTRL_AXIS_INPUT_ID Change axis control input index. This can be used to set an axis
to mirror the command position of another axis (e.g. when
using slave axes) . The “value” can be set to 0 – 5 to specify
which axis to mirror the command position from.

150 – 155 SET_CTRL_MOTION_OVERRIDE Toggle Macro Axis Motion Override. A value of 1 allows ONLY
the macro to control motion. A value of 0 removes the
override.

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 13 www.vitalsystem.com

3. Motion Functions

Motion functions are NON-BLOCKING which means that a function call for any of the motion functions will
immediately return and not wait for the actual motion to finish. As such, the program must wait for motion to
complete (in some cases) so that the axis may transition to the “Idle” state before issuing new motion commands.

The presence of active motion on all axes can be verified via GetControl(120) or GetControl(210 – 217) for
individual axes. Active motion can also be stopped by calling CancelMove(axis), which cancels the motion process
on the specified axis.

Motion Modes

Motion Functions utilize a “mode” parameter to indicate the type of motion to execute.

Mode Type Value C #define Description

Incremental 2 MOVE_TYPE_RELATIVE Position parameter is used as the distance from the current
position.

Absolute 4 MOVE_TYPE_ABSOLUTE Position parameter is used as the destination in absolute
coordinates (as referenced to machine zero position).

Velocity 8 MOVE_TYPE_VELOCITY Only the sign (+ or -) of the position parameter is used to
determine the direction of the move, since a velocity move is
an infinite move in a given direction.

Motion Error Codes

Motion functions return a non-zero error code. A return value of zero indicates that the motion was started
successfully with no errors.

C# define Value Description

MOTION_ERROR_NONE 0 Motion executed successfully.

MOTION_ERROR_EXEC 301 Motion could not be executed.

MOTION_ERROR_CANCEL 302 Motion could not be cancelled.

MOTION_ERROR_DIRECTION_CHANGE 303 This error is returned when an axis is currently executing
motion, and a new motion command is called with a
destination in the opposite direction. This can be avoided by
cancelling the current motion or waiting for it to stop.

NOTE: Before motion commands can be performed, the controller must first be configured from within Mach3
or Mach4 (this only needs to be done once if running in standalone operation). Instructions for this can be found
in the Mach3 or Mach4 integration manual.

The controller (and all axes that will receive motion commands) must be armed, as a motion command issued
on a disabled axis will throw a motion error.

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 14 www.vitalsystem.com

long DoMotionAxis(int axis, float finalPosition, float speed, float accel, long mode)

Execute point to point motion for selected axis from current position.

Parameters:

• axis – the axis to perform motion with (X=0, Y=1, Z=2, etc).

• finalPosition – the destination position (actual usage depends on the mode parameter).

• speed – max speed of the motion (units/min).

• accel – acceleration of the motion (units/sec2).

• mode – (see this section).

If active motion from a prior DoMotionAxis() call is already present on the axis, calling this function will “continue
on” from the current motion.

For example, if the axis is currently moving at a speed of 100 units/min, and a new motion command was issued
with a speed of 200units/min, then the axis will ramp up from 100 to 200 units/min using the new acceleration and
will stop at the new final position.

However, a motion error is thrown if the target direction of the new motion is in the opposite direction of the current
motion. In this case, it is necessary to wait for the current motion to finish before commanding the new motion.

MOTION_ERROR_INVALID_PARAM 304 One of the parameters passed with the motion function was
bad (e.g. accel or velocity was zero).

MOTION_ERROR_AXIS_DISABLED 305 The axis is currently disabled. This can be avoided by enabling
the axis in the “SetControl(91, axisMap)” call.

MOTION_ERROR_AXIS_OUT_OF_RANGE 502 The specified axis does not exist.

Example: The following examples show the different modes of calling DoMotionAxis where “accel”=2.45 and
“speed”=10.2

DoMotionAxis(1, 500.25, 10.2, 2.45, 2) // Moves axis 1 to 500.25 units from the current position.

DoMotionAxis(1, 500.25, 10.2, 2.45, 4) // Moves axis 1 to 500.25 units from the zero reference.

DoMotionAxis(1, -1, 10.2, 2.45, 8) // Moves axis 1 infinitely in the negative direction.

Example: How to properly change the axis motion direction.

int axis = 0; // This example assumes that the axis is at position zero
DoMotionAxis(axis, 100, 100, 10, 4); // move to the positive direction

while (GetControl(210 + axis) != 0) // wait for the current motion to finish
 Sleep (10);

DoMotionAxis(axis, -100, 100, 10, 4); // move the axis to the negative direction

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 15 www.vitalsystem.com

long DoMotionXYZ(float posX, float posY, float posZ, float speed, float accel, long mode)

Execute a coordinated point to point motion for the x, y, and z axes.

Parameters:

• posX – the destination position of the X axis (actual usage depends on the mode parameter).

• posY – the destination position of the Y axis (actual usage depends on the mode parameter).

• posZ – the destination position of the Z axis (actual usage depends on the mode parameter).

• speed – max speed of the coordinated linear motion (units/min).

• accel – acceleration of the coordinated linear motion (units/sec2).

• mode – (see this section).

long DoLinearMove (long axisMap, float* axisPositions, float speed, float accel, long mode)

Execute a coordinated point to point move on the specified axes.

Parameters:

• axisMap – bitmask used to determine which axes will execute the motion (e.g. bit0=X, bit1=Y, bit2=Z, etc).
Example: To move X, Y, Z, and B, the axisMap value would be “23” (binary: 00010111).

• axisPositions – an array of floats float[6] for HiCONs which contains the target positions for the designated
axes.

• speed – max speed of the coordinated linear motion (units/min).

• accel – acceleration of the coordinated linear motion (units/sec2).

• mode – (see this section).

Example: Move X to 500.25, Y to 600.25, and Z to 700.25 inches, with an acceleration of 2.45 inches/sec2 and
maximum speed of 10.2 inches/minute (assuming units are set to inches in Mach).

DoMotionXYZ(500.25, 600.25, 700.25, 10.2, 2.45, MOVE_TYPE_ABSOLUTE);

Example: Move (to absolute coordinates) X to 50.25, Y to 60.9, and A to 70 inches, with an acceleration of 2.45
inches/sec2 and maximum speed of 10.2 inches/minute (assuming units are set to inches in Mach).

float axisPositions[8];
axisPositions[0] = 50.25; // X axis position
axisPositions[1] = 60.9; // Y axis position
axisPositions[3] = 70; // A axis position

int axisMap = 11; // binary (00001011)

DoLinearMove(axisMap, axisPositions, 10.2, 2.45, MOVE_TYPE_ABSOLUTE);

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 16 www.vitalsystem.com

long DoHoming(long axis, float homePosition, float speed, float accel, long homingParams)

Execute a homing sequence on the specified axis to find its point of reference.

Parameters:

• axis – the axis to home (X=0, Y=1, Z=2, etc).

• homePosition – the axis position will be set to this value when the homing process is successful.

• speed – max speed of the coordinated linear motion (units/min).

• accel – acceleration of the coordinated linear motion (units/sec2).

• homingParams – bitmask used for specifying the following options:

- Bit0 – Reverse homing direction.
- Bit1 – Use Home Sensor.
- Bit2 – Use Index Pulse.

Homing Sequence for Home Sensor (no index pulse):

1. Move in one direction attempting to search for the home sensor.
2. Once the sensor is found, it reverses direction (using 20% of the specified velocity) to unblock the sensor
3. The moment the sensor is unblocked, the homing sequence is completed and the “homePosition” is used

as the new home position.

Homing Sequence for Index Pulse Only:

1. If the index pulse is already active, the axis moves a short distance to move away from the index pulse.
2. The axis moves in one direction attempting to find the Index Pulse.
3. The moment the index pulse is found, the homing sequence is completed and the “homePosition” is used

as the new home position.

Homing Sequence for Home Sensor with Index Pulse:
1. Move in one direction attempting to search for the home sensor.
2. Once the sensor is found, it reverses direction (using 20% of the specified velocity) to unblock the sensor
3. When the home sensor is unblocked, the axis keeps moving until the index pulse is found.
4. The moment the index pulse is found, the homing sequence is completed and the “homePosition” is used

as the new home position.

NOTE: This function will return an error if both “Use Index Pulse” (bit1) and “Use Home Sensor” (bit2) are set to
zero.

It is important to monitor the result of the homing routine by checking GetHiCON(190 – 195) to check if the
homing process is still ongoing for the axis. GetHiCON(200 – 205) is used to check if the home position has been
found for the specified axis upon completion of the homing process.

Example: Home the X axis by using the home sensor and index pulse.

int homingParams = 0;
homingParams |= 2; // use home sensor
homingParams |= 4; // use index pulse

DoHoming(0, 0, 50, 10, homingParams);

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 17 www.vitalsystem.com

CancelMove(long axis, long instantStop)

Cancels the active motion on the specified axis.

Parameters:

• axis – the axis on which to cancel motion (X=0, Y=1, Z=2, etc).

• instantStop – indicates how the axis should stop (0 = decelerate to a stop, 1 = stop instantly).

Example: Stop motion on the X and Z axis.

CancelMove(0, 0);
CancelMove(2, 0);

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 18 www.vitalsystem.com

4. Arc/Circle Motion Functions

Arc Motion Errors

Arc Motion commands will return the following error codes if the motion fails to execute. A return code of “0”
denotes that the motion has successfully started.

Error Description

10001 Axis not idle error. This error is returned if one of the axes involved with the Arc Motion was not
idle/still when the Arc Motion command was started.

10500 Inconsistent radius error. This error can be returned if the “start-to-center” distance is not equal to the
“target-to-center” distance.

10501 360° angle impossible error. This error is returned by the “DoArcMoveRadius”, and “DoArcMoveAngle”
functions since they cannot mathematically interpolate the center point of a 360° arc.

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 19 www.vitalsystem.com

long DoArcMoveCenter (long axisOfRotation, float* axisPositions, float offset1, float offset2,
float speed, bool clockwise)

Execute an Arc/Circular trajectory move around an axis of rotation by specifying a center point relative to the initial
position.

Parameters:

• axisOfRotation – The axis where the arc/circle trajectory will rotate on.

o A value of 0 means that the arc will be plotted on the YZ plane.

o A value of 1 means that the arc will be plotted on the XZ plane.

o A value of 2 means that the arc will be plotted on the XY plane.

• axisPositions – an array of floats float[6] for HiCONs which contains the target/end positions for the arc
trajectory.

• offset1 – Offset from the current axis position to use for the center point. Usage is determined by the
“axisOfRotation” parameter.

o If “axisOfRotation” is 0, then this value is used as the Y offset.

o If “axisOfRotation” is 1, then this value is used as the X offset.

o If “axisOfRotation” is 2, then this value is used as the X offset.

• offset2 – Offset from the current axis position to use for the center point. Usage is determined by the
“axisOfRotation” parameter.

o If “axisOfRotation” is 0, then this value is used as the Z offset.

o If “axisOfRotation” is 1, then this value is used as the Z offset.

o If “axisOfRotation” is 2, then this value is used as the Y offset.

• speed – max arc trajectory speed/feedrate.

• clockwise – specifies the direction of the arc motion. (1 = clockwise, 0 = counter-clockwise).

Example: This code snippet will produce the following trajectory.
Start Position = {120, 60, 0}.

float targetPositions[6];
targetPositions[0] = 120;
targetPositions[1] = 60;
targetPositions[2] = 0;
DoArcMoveCenter(2, targetPositions, -60, 0, 120, 1);

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 20 www.vitalsystem.com

long DoArcMoveRadius (long axisOfRotation, float* axisPositions, float radius, float speed,
bool clockwise)

Execute an Arc/Circular trajectory move around an axis of rotation by specifying the radius of the arc/circle trajectory
in order to interpolate the arc center.

Parameters:

• axisOfRotation – The axis where the arc/circle trajectory will rotate on.

o A value of 0 means that the arc will be plotted on the YZ plane.

o A value of 1 means that the arc will be plotted on the XZ plane.

o A value of 2 means that the arc will be plotted on the XY plane.

• axisPositions – an array of floats float[6] for HiCONs which contains the target/end positions for the arc
trajectory.

• radius – The radius of the specified arc/circle trajectory.

• speed – max arc trajectory speed/feedrate.

• clockwise – specifies the direction of the arc motion. (1 = clockwise, 0 = counter-clockwise).

NOTE: This function has the following mathematical limitations:

• The start point cannot be equal to the end point (360° arc center point cannot be interpolated).

• Cannot generate arcs with angles greater than 180°.

For arcs larger than 180°, use “DoArcMoveCenter”, or call this function twice.

Example: This code snippet will produce the following trajectory.
Start Position = {100, 0, 0}.

float targetPositions[6];
targetPositions[0] = 0;
targetPositions[1] = -100;
targetPositions[2] = 0;
DoArcMoveRadius(2, targetPositions, 100, 120, 0);

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 21 www.vitalsystem.com

long DoArcMoveAngle (long axisOfRotation, float* axisPositions, float arcAngle, float speed,
bool clockwise)

Execute an Arc/Circular trajectory move around an axis of rotation by specifying the angle of the arc/circle trajectory
in order to interpolate the arc center.

Parameters:

• axisOfRotation – The axis where the arc/circle trajectory will rotate on.

o A value of 0 means that the arc will be plotted on the YZ plane.

o A value of 1 means that the arc will be plotted on the XZ plane.

o A value of 2 means that the arc will be plotted on the XY plane.

• axisPositions – an array of floats float[6] for HiCONs which contains the target/end positions for the arc
trajectory.

• arcAngle – The angle of the arc trajectory to generate.

• speed – max arc trajectory speed/feedrate.

• clockwise – specifies the direction of the arc motion. (1 = clockwise, 0 = counter-clockwise).

NOTE: This function has the following mathematical limitations:

• The start point cannot be equal to the end point (360° arc center point cannot be interpolated).

For larger arcs such as a full 360° circle, use “DoArcMoveCenter”, or call this function twice with both instances
generating a 180° arc.

Example: This code snippet will produce the following trajectory.
Start Position = {0, 0, 0}.

float targetPositions[6];
targetPositions[0] = 60;
targetPositions[1] = 60;
targetPositions[2] = 0;
DoArcMoveRadius(2, targetPositions, 270, 120, 1);

VSI C-Macro User Guide

© 2020 Vital Systems, Inc. 22 www.vitalsystem.com

III. Debug Registers

When running a VSI C-Macro program, debug registers are allocated by default. These registers
are automatically updated in the VSI Macro Loader Output View to reflect their current values in
the VSI C-Macro program, and as such, are a helpful tool when watching values is necessary.

The number of available debug registers are as follows:

• DebugRegisters[8] (32-bit integer registers)

• DebugFloats[8] (32-bit floating point registers)

Example: The following code snippet writes the current axis feedback positions (in counts)
to the debug registers for watching.

int index = 0;
for(index = 0; index < 8; index++)
 DebugRegisters[index] = GetControl(GET_CTRL_AXIS_FEEDBACK_POS + index);

Example: The following code snippet writes the current feedback positions (in units) to the
debug registers for watching.

int index = 0;
for(index = 0; index < 8; index++)
{
 float feedbackCounts = GetControl(GET_CTRL_AXIS_FEEDBACK_POS + index);
 float countsPerUnit = GetControl(GET_CTRL_COUNTS_PER_UNIT + index);

 DebugFloats[index] = (feedbackCounts / countsPerUnit);
}

